Pharmacological modulation of mGluR7 with AMN082 and MMPIP exerts specific influences on alcohol consumption and preference in rats

Amine Bahi1, Katharina Fizia1, Monika Dietz1, Fabrizio Gasparini2 & Peter J. Flor1
University of Regensburg, Faculty of Biology and Preclinical Medicine, Regensburg, Germany1 and Novartis Pharma AG, Neuroscience Discovery, Basel, Switzerland2

ABSTRACT

Growing evidence supports a role for the central nervous system (CNS) neurotransmitter L-glutamate and its metabotropic receptors (mGluRs) in drug addiction in general and alcohol-use disorders in particular. Alcohol dependence, for instance, has a genetic component, and the recent discovery that variations in the gene coding for mGluR7 modulate alcohol consumption further validates involvement of the L-glutamate system. Consequently, increasing interest emerges in developing L-glutamatergic therapies for the treatment of alcohol abuse and dependence. To this end, we performed a detailed behavioral pharmacology study to investigate the regulation of alcohol consumption and preference following administration of the mGluR7-selective drugs N,N′-dibenzhydryl-ethane-1,2-diamine dihydrochloride (AMN082) and 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one hydrochloride (MMPIP). Upon administration of the allosteric agonist AMN082 (10 mg/kg, i.p.) in rats, there was a significant decrease in ethanol consumption and preference, without affecting ethanol blood metabolism. In contrast, mGluR7 blockade with MMPIP (10 mg/kg, i.p.) showed an increase in alcohol intake and reversed AMN082’s effect on ethanol consumption and preference. Both mGluR7-directed pharmacological tools had no effect on total fluid intake, taste preference, or on spontaneous locomotor activity. In conclusion, these findings support a specific regulatory role for mGluR7 on alcohol drinking and preference and provide evidence for the use of AMN082-type drugs as potential new treatments for alcohol-use disorders in man.

Keywords Alcohol, AMN082, L-glutamate, mGluR7, MMPIP, two-bottle choice.

INTRODUCTION

Alcohol is consumed and abused by a large population worldwide resulting in severe physical and mental health disorders. Alcohol dependence, also referred to as alcoholism, is characterized by compulsive alcohol intake despite severe adverse consequences on body and mind. It is well-established, as for other drugs of abuse, that alcohol induces changes in the mesolimbic dopamine reward system (Carboni et al. 2000; Engleman et al. 2000). As blood alcohol levels rise, neurons of the ventral tegmental area (VTA) in the midbrain are activated and release dopamine into numerous target areas including the nucleus accumbens (NAc) and prefrontal cortex (Carboni et al. 2000; Engleman et al. 2000; Weiss & Porrino 2002; Gilman et al. 2008; Ding et al. 2009; Howard et al. 2009).

Furthermore, a variety of the physiological, biochemical and behavioral effects of ethanol are known to involve the L-glutamatergic system (Gruol, Parsons & DiJulio 1997; Netzeband et al. 1997; Minami et al. 1998; Dodd et al. 2000; Littleton et al. 2001; Simonyi et al. 2004). Microdialysis studies have shown that ethanol increases L-glutamate levels in many brain regions including the NAc (Moghaddam & Bolinao 1994; Selim & Bradberry 1996; Szumlinski et al. 2007).

L-glutamate is the primary excitatory neurotransmitter in the mammalian central nervous system (CNS) playing an important role in many physiological, behavioral and pathological processes. It has been shown that slower, modulatory actions of L-glutamate are mediated by the eight metabotropic glutamate receptors (mGluR1 to −8) coupled to G-proteins that induce a variety of...
intracellular signaling cascades modulating synaptic transmission and neuronal excitability throughout the CNS. In contrast, fast excitatory effects of L-glutamate are mediated by three ionotropic receptor (iGluR) families: N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)- and kainate (KA)-receptors (Nakanishi et al. 1994; Kew 2004; Palucha & Pile 2005; Gasparini et al. 2008). The mGluRs are members of the G-protein-coupled receptor (GPCR) superfamily, the most abundant receptor gene family in the human genome (Luttrell 2006). Based on amino acid sequence similarity, agonist pharmacology, and signal transduction pathways, mGluRs are categorized into three groups: group I (mGluR1 and 5) up-regulate phosphatidylinositol-hydrolysis and Ca2+-mobilization. In contrast, group II (mGluR2 and 3) and group III (mGluR4, −6, −7 and −8) receptors inhibit adenylate cyclase and regulate Ca2+- and K+-channels (Thomas 2002; Wang et al. 2004; Rodriguez-Moreno & Sihra 2007; Niswender & Conn 2010). Targeting mGluRs is considered promising for the treatment of alcohol-use disorders. In fact, the mGluR5-selective antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) dose-dependently reduced ethanol-reinforced responding during peak periods of behavior occurring during the early hours of the diurnal dark phase (Hodge et al. 2006). MPEP also inhibited the discriminative stimulus properties of consumed ethanol during a self-administration test session (Besheer, Stevenson & Hodge 2006). In addition, pre-treatment of C57BL/6j mice with MPEP or the mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) dose-dependently reduced measures of ethanol self-administration, blocked the expression of ethanol-induced place conditioning, as well as ethanol consumption under 24 hours free-access conditions (Lominac et al. 2006). Furthermore, the mGluR2/3 agonist LY379268 and the mGluR8 agonist (S)-3,4-DCPG attenuated ethanol self-administration and reinstatement (Backstrom & Hytia 2005).

Although mGluR7 is widely distributed throughout the brain (Okamoto et al. 1994; Kinoshita et al. 1998), its highest expression was found in neocortex, thalamus, hypothalamus, hippocampus, locus coeruleus and NAc (Saugstad et al. 1994; Kinzie et al. 1995). Its presynaptic localization within symmetrical and asymmetrical synapses suggested that mGluR7 might serve as heteroreceptor to regulate GABA release as well as an autoreceptor to control L-glutamate release (Bradley et al. 1996). Mice with genetic ablation of mGluR7 showed antidepressant- and anxiolytic-like activities in a number of behavioral tests (Cryan et al. 2003). These mice have reduced amygdala- and hippocampus-dependent conditioned fear and aversion responses (Masugi et al. 1999). Moreover, it has been found that the mGluR7 activator AMN082 induced a dose-dependent decrease in immobility in despair-related tests suggesting antidepressant-like activity (Palucha et al. 2007). In addition, AMN082 is known to modulate high frequency synaptic transmission in the rat basolateral amygdala (Ugolini, Large & Corsi 2008) further suggesting that pharmacological interference with mGluR7 may provide novel treatments for psychiatric disorders such as depression, anxiety and possibly drug addiction.

Regarding ethanol-related behaviors, chronic exposure of rats to an ethanol-containing liquid diet decreased mRNA levels for mGluR7 in the CA3 region of the hippocampus (Simonyi et al. 2004). To our knowledge, the first study directly linking mGluR7 to alcohol-related behavior was published by Vadasz et al. (2007), who identified the mGluR7-locus as a cis-regulated gene for alcohol consumption; in this study, mice with a reduction of mGluR7 transcripts were found to consume more alcohol than controls. Interestingly, Li, Gardner & Xi (2008) demonstrated that systemic and intra-NAc administration of the mGluR7 allosteric agonist AMN082 lowered NAc extracellular GABA and increased extracellular glutamate, but had no effect on extracellular DA levels; and a year later, the same group showed that AMN082 treatment in rats inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration (Li et al. 2009). Taken together, these results clearly indicate a role for mGluR7 in the brain circuitry of reward and drug addiction.

Here, we hypothesized that selective pharmacological modulation of mGluR7 with novel drug tools such as AMN082 and 6-(4-Methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]-pyridin-4(5H)-one hydrochloride (MMPIP) has the potential to exert specific influences on alcohol consumption, preference and possibly addiction without affecting control parameters such as taste preference/neophobia, total fluid intake and locomotor activity (for contrast however, see the work by Salling, Facchinello & Hodge (2008). To investigate this exciting possibility, we decided to apply well selected dosing regimens of AMN082 and MMPIP in conjunction with the two-bottle free-choice behavioral paradigm in rats, using combinations of different ethanol concentrations with water and adequate control taste substances. Overall, we aim to examine whether mGluR7 functional activity in the CNS exerts specific regulatory roles on alcohol drinking and reinforcing properties in mammals.

MATERIALS AND METHODS

Animals and housing

Male Wistar rats (Charles River, Sulzfeld, Germany; 250–350 g body weight) were housed in standard plexiglas...
cages and kept in the animal facilities under standard laboratory conditions (12/12 hours light–dark cycle, lights off at 7 am, 22°C, 55% relative humidity) with free access to water and standard rat chow. Experimental procedures were approved by the local government of the Oberpfalz (Bavaria, Germany) and followed the European Communities Council directive (86/609/EEC). All efforts were made to minimize the number of animals used.

Drugs

Ethanol was obtained from J.T. Baker (Deventer, the Netherlands). The tastants saccharin sodium salt dihydrate was purchased from Merck (Heidenbrunn, Germany) and quinine hemisulfate monohydrate was obtained from AlfaAesar (Karlsruhe, Germany). Ethanol and the tastants were diluted in tap water. AMN082 was synthesized at Novartis Pharma AG (Basel, Switzerland) and MMPIP was purchased from Ascent Scientific (Bristol, UK). Drugs were diluted in 0.5% methylcellulose from AMIMED (Allschwil, Switzerland) for i.p. injections. The volume of injection (1 ml/kg) was adjusted to body weight. Rat doses for AMN082 (5, 10, and 20 mg/kg, i.p.) were chosen based on previously published studies (Mit-sukawa et al. 2005; Palucha et al. 2007; Fendt et al. 2008; Stachowicz et al. 2008; Hikichi et al. 2010b) and MMPIP was purchased from Ascent Scientific (Bristol, UK). Drugs were diluted in 0.5% methylcellulose from AMIMED (Allschwil, Switzerland) for i.p. injections. The volume of injection (1 ml/kg) was adjusted to body weight. Rat doses for AMN082 (5, 10, and 20 mg/kg, i.p.) were chosen based on previously published studies (Mit-susawa et al. 2005; Palucha et al. 2007; Fendt et al. 2008; Siegl, Flor & Fendt 2008; Stachowicz et al. 2008; Hikichi et al. 2010b); higher doses in rats (30–60 mg/kg) and mice (10–20 mg/kg) induced motor side-effects such as mild ataxia and/or body tremor; these side-effects emerged 12–21 minutes after i.p. administration of AMN082. Moreover, early pharmacokinetic studies conducted at Novartis Pharma AG demonstrated that AMN082 reaches low micromolar brain levels at 0.25–1 hour after systemic administration with significant drug levels still present after 24 hour, although reduced by >90% compared with the 1-hour timepoint. Taken together, in vivo pre-application of AMN082 for 30 or 60 minutes, prior to the examination of behavioral or physiological read-outs, seems to be ideal, and the maximum tolerated dose in rats appears to be 20 mg/kg. Dosing and pre-application of MMPIP was conducted based on recent studies where 10–30 mg/kg of MMPIP were used in both mice (Hikichi et al. 2010b) and rats (Hikichi et al. 2010a).

Ethanol preference drinking: two-bottle free-choice model

Oral alcohol self-administration and preference were studied using a two-bottle choice paradigm (see experimental timeline in Supporting Information Fig. S1) (Choi et al. 2004; Kamens, Andersen & Picciotto 2010; Lee et al. 2010). Briefly, rats were presented with two bottles filled with water and given 1 week to acclimatize to individual housing conditions and handling in the testing environment. On day 1, one bottle was filled with a 1% ethanol solution. The positions of the bottles were changed every day to control for position preference. The concentration of ethanol was raised every fourth day, increasing from 1 to 3, 6, 10%, and finally to 20% (v/v) ethanol in tap water. Ethanol solutions were made by diluting 95% ethanol with the appropriate volume of water (i.e. volume-by-volume). All fluids were presented in 250 ml graduated plastic cylinders from Eheret (Emmendingen, Germany) with stainless steel drinking spouts from Tecniplast (Varese, Italy) which were securely held through the wire mesh cage lid. The bottles were weighed to the nearest tenth of a gram before they were placed on the cage. Fluid intakes in grams were converted to milliliters with the assumption for all solutions that 1 ml = 1 g. To control for spillage and leakage caused by evaporation or experimenter handling, weekly ‘drip’ averages (loss of fluid in a cage with no animal present) were subtracted from individual fluid intakes. For each concentration, the average ethanol consumption per day was obtained and used for the analysis. To obtain an accurate measure of ethanol consumption, grams of ethanol consumed per kilogram of body weight per day were calculated for each rat. A measure of the relative ethanol preference ratio was calculated for each ethanol concentration by dividing the total ethanol solution consumption by the total fluid (ethanol plus water) consumption. Intakes from both bottles were summed to obtain total fluid intake.

Tastant drinking preference for quinine and saccharin

After the ethanol self-administration procedure, we examined potential differences in taste preference, which could influence ethanol consumption and preference. Rats were tested for saccharin (sweet) and quinine (bitter) fluid intake and preference in an order-balanced experimental design that can detect taste neophobic (Crabbe et al. 1996). Saccharin and quinine solutions were used because of their strong tastes and lack of caloric value. The concentration of saccharin (0.04 and 0.08%) and quinine (0.02 and 0.04 mM) were raised at day 4 and the positions of the bottles were changed every day to control for position preference (see experimental timeline in Supporting Information Fig. S1). Throughout the experiments, fluid intake and body weight were measured every day. Similarly, the relative taste preference ratio was calculated at each concentration by dividing the total saccharin or quinine solution consumption by total fluid consumption.

Pharmacological manipulations

Rats were injected with saline, AMN082 (5, 10 and 20 mg/kg, i.p.) or MMPIP (10 mg/kg, i.p.) to determine
their effects on ethanol consumption and preference for a solution of 3% ethanol versus tap water. Rats were presented with two bottles, one containing 3% ethanol and the other tap water, for 4 days. Starting on day 5, rats received daily saline injections 30 minutes before the dark phase and before presentation of the bottles. Fluid levels were read 4 and 24 hours later.

AMN082 and MMPiP injections started after the rats reached stable ethanol consumption (<10% variation over a 4-day period). Rats were given 7 days of access to food and water after ethanol testing before testing the effect of AMN082 and MMPiP on saccharin and quinine consumption.

Open-field locomotor activity

Spontaneous activity was measured to examine the potential locomotor effects of our effective doses of AMN082 and MMPiP in plexiglas home cages using the EthoVision 3.1 recording system [Noldus Information Technology, VA, USA; (Noldus, Spink & Tegelenbosch 2001; Spink et al. 2001; Pham et al. 2009). Rats were i.p. injected with methyl cellulose vehicle (1 ml/kg), AMN082 (10 mg/kg) or MMPiP (10 mg/kg) to examine their pharmacological effects on spontaneous locomotor activity 30 minutes, 4 hours and 24 hours after injection. Rats were observed for 1 hour and horizontal distance traveled (cm) recorded was used as an index of motor function.

Ethanol metabolism

Animals were given a single dose of ethanol (3.5 g/kg; i.p.) together with either vehicle (1 ml/kg) or AMN082 (10 mg/kg). Blood samples were taken from tails 1, 2, 3, 4 and 5 hours after injection. Blood was collected in heparin-treated tubes and centrifuged. Then, ethanol was determined spectrophotometrically (Hu et al. 2004; Cai et al. 2006). Blood ethanol concentration values were expressed as milligram ethanol per milliliter of blood.

Statistical analysis

Data were expressed as means ± standard error of the mean. Statistical analyses on all experiments were carried out using one-way measures of variance (ANOVA) followed by the Tukey post hoc test. The criterion for statistical significance was $P < 0.05$.

RESULTS

Ethanol consumption

Rats were first tested with increasing ethanol concentrations to establish an optimal working dose for our planned pharmacological experiments. There was a significant main effect of ethanol concentration (Fig. 1). Analysis of the initial taste reactivity to ethanol and water has revealed a significantly higher consumption towards the 3% ethanol solution with approximately 2 g/kg of alcohol consumption [Fig 1a, $F(4,39) = 16.248; P < 0.001$]. The preference ratio was also significantly higher for the 3% solution [Fig 1b, $F(4,39) = 21.356; P < 0.001$] but no difference was observed in total fluid intake [Fig 1c, $F(4,39) = 1.219; P = 0.314$].

Preference for non-alcohol tastants

To determine whether differences in ethanol consumption and preference could be due to taste sensitivity, we examined consumption of a sweet (saccharin) and bitter (quinine) tastant in the five groups previously tested with ethanol (see experimental timeline in Supporting Information Fig. S1); the results are summarized in Fig. 2. There were no differences in saccharin consumption (Fig. 2a) or preference (Fig. 2b) in any of the groups. Total fluid intake was not changed as well (Fig. 2c). There

![Figure 1](image-url)
Figure 1 Voluntary alcohol consumption in rats as a function of ethanol concentration. Data represent consumption, preference and total fluid intake as a function of ethanol concentration. Rats were subjected to the two-bottle choice paradigm with one bottle containing tap water and the other containing different ethanol concentrations. (a) Ethanol consumption (g/kg); (b) Ethanol preference ratio and (c) Total fluid intake (ml) in male Wistar rats. Values represent means ± standard error of the mean; n = 8 per group; *P < 0.05

© 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction
Addiction Biology, 17, 235–247
was a significant main effect of concentration, i.e. rats consumed significantly more saccharin when the 0.08% concentration of saccharin was presented compared with the 0.04% concentration \(F(1,39) = 14.488; P < 0.001 \). In addition, there was a significant main effect of saccharin concentration on total fluid consumption. In fact all groups consumed more fluid when the 0.08% concentration was presented compared with the 0.04% solution \(F(1,39) = 27.511; P < 0.001 \). However, saccharin concentration had no statistically significant effect on preference ratio \(F(1,39) = 1.411; P = 0.377 \).

Effects of AMN082 and MMPIP on ethanol and tastant consumption and preference in rats

A robust effect of AMN082 on ethanol consumption and ethanol preference is shown in Fig. 3. Using the two-bottle choice test with one bottle containing a 3% ethanol concentration and the other bottle containing water, 10 mg/kg of AMN082 decreased ethanol consumption in rats during the first 4 hours following injection, evident by a significant main effect of dose [Fig 3a, \(F(1,19) = 14.452; P < 0.001 \)]. A dose-dependent reduction of the ethanol preference ratio was also observed [Fig 3b, \(F(1,11) = 20.564; P < 0.001 \)]. Interestingly, Alcohol consumption and preference were also reduced when the highest dose of 20 mg/kg of AMN082 was used but this reduction was less pronounced compared with 10 mg/kg of AMN082. A possible explanation is that such higher doses of AMN082 may have an opposite effect on mGluR7, as the receptor may get internalized by AMN082 (as demonstrated by Pelkey et al. 2007). In contrast, the total fluid intake was not modified [Fig 3c, \(F(1,19) = 1.563; P = 0.397 \)]. By 24 hours after drug injection, the effects of AMN082 on ethanol consumption [Fig 3d, \(F(1,19) = 0.547; P = 0.261 \)] and preference [Fig 3e, \(F(1,19) = 0.687; P = 0.247 \)] were no longer apparent. We also performed the two-bottle choice test with 10% ethanol versus water; here, AMN082 had no significant modulatory effect on ethanol consumption or preference measured either after 4 or 24 hours (see Supporting Information Fig. S1).

Differences in ethanol consumption and preference may be affected by pre-ingestion factors (e.g. taste). To determine if there were general effects of AMN082 treatment on ethanol-unrelated tastants, rats received 10 mg/kg AMN082 injections when given access to saccharin or quinine. In these studies, 4 hours after injection
there was no difference between AMN082 and vehicle-treated groups (data not shown); based on this, we decided to examine tastant consumption and preference also 24 hours post-injection. The results are summarized in Fig. 4. There were no significant main effects on saccharin consumption after AMN082 administration \([F(1,19) = 1.748; P = 0.577] \). AMN082 did not affect the saccharin preference ratio \([F(1,19) = 0.994; P = 0.457] \) or total fluid intake in these groups \([F(1,19) = 1.277; P = 0.284] \). There was a significant main effect of saccharin concentration. Rats consumed more saccharin when the 0.08% concentration of saccharin was presented compared with the 0.04% concentration \([F(1,19) = 22.457; P < 0.001] \). However, saccharin concentration had no effect on the preference ratio \([F(1,19) = 0.924; P = 0.411] \). In addition, there was a significant main effect of saccharin concentration on total fluid consumption as all the groups consumed more fluid when the 0.08% concentration was presented compared with the lower concentration \([F(1,19) = 20.150; P < 0.001] \). Furthermore, for quinine solutions, the ANOVA did not show any effects of AMN082 dosage; see Fig. 4. In summary, these results suggest that decreased consumption of ethanol and decreased ethanol preference following AMN082 administration are not associated with altered taste preference.

The effects of the mGluR7 antagonist MMPIP on ethanol consumption and preference are shown in Fig. 5. Based on a recent study we used MMPIP at 10 mg/kg (Hikichi et al. 2010b) and, as for the AMN082 studies, an ethanol concentration of 3%. MMPIP increased ethanol consumption compared with vehicle-treated rats during the first 4 hours after injection \([Figs \ 5a, \ F(1,19) = 6.415; P = 0.024] \). An increase of ethanol preference ratio was also observed \([Fig \ 5b, \ F(1,19) = 5.024; P = 0.031] \), while the total fluid intake remained unchanged \([Fig \ 5c, \ F(1,19) = 0.325; P = 0.264] \). As for AMN082, no effects were observed on alcohol consumption and preference 24 hours after MMPIP injection (see Supporting Information Fig. S1).

MMPIP did not affect saccharin consumption \([Fig \ 6a, \ F(1,19) = 0.807; P = 0.197] \) and preference \([Fig \ 6b, \ F(1,19) = 1.244; P = 0.137] \). However, rats consumed more saccharin when the 0.08% solution was presented compared with 0.04% \([F(1,19) = 15.278; P < 0.001] \), but the saccharin concentration had no effect on the preference ratio \([F(1,19) = 0.354; P = 0.240] \). In addition, there was a main effect of saccharin concentration on total fluid consumption as all the groups consumed more fluid when the 0.08% compared with the 0.04% concentration was presented \([F(1,19) = 26.422; P < 0.001] \). As for AMN082, the MMPIP administration had no effect on...
Effects of AMN082 and MMPIP on open field locomotor activity and ethanol metabolism

We examined AMN082 and MMPIP on spontaneous locomotor activity. Both drugs were used at 10 mg/kg (i.p.), as in all the experiments shown above, and the results are presented in Fig. 7a. There were no differences in basal spontaneous locomotion of rats treated with either AMN082 and MMPIP (both at 10 mg/kg, i.p.) or vehicle [F(2, 29) = 0.409; P = 0.745; Fig. 7a]. In addition, there were no differences in metabolism of ethanol (3.5 g/kg; i.p.) between vehicle, AMN082-, and MMPIP-treated rats as shown in Fig. 7b. The slopes of the regression lines were −0.53 ± 0.06, −0.52 ± 0.08 and −0.55 ± 0.05 for vehicle, AMN082 and MMPIP treatment, respectively.

AMN082 effect on ethanol preference challenged with MMPIP

In a further experiment we tested whether the AMN082-induced reduction of ethanol consumption and preference can be blocked by pre-treatment with the
mGluR7-selective antagonist MMPIP injected 30 minutes before AMN082 was administered (both at 10 mg/kg, i.p.; Fig. 8). Vehicle pre-treated rats, challenged with AMN082, showed reduced alcohol consumption and preference as compared with animals treated with vehicle/vehicle. This AMN082-induced reduction in ethanol consumption and preference was reversed by MMPIP pre-treatment during the first 4 hours following injections, evident by a significant main effect of drug for alcohol consumption [Fig 8a, \(F_{(2,29)} = 10.380; P < 0.01 \)] and for alcohol preference [Fig 8b, \(F_{(2,29)} = 17.675; P < 0.01 \)]. Importantly, combined AMN082 and MMPIP administration had no effect on total fluid intake [Fig 8c, \(F_{(2,29)} = 0.284; P = 0.837 \)].

DISCUSSION

Understanding the molecular and cellular basis of ethanol abuse and addiction may open up novel avenues for the development of therapeutics for alcoholism in...
man. Here, we demonstrate for the first time that mGluR7 activation with AMN082 specifically reduces alcohol intake and preference in rats without affecting taste preference, alcohol metabolism and locomotor activity, whereas mGluR7 blockade with MMPiP enhances alcohol consumption and preference. These findings strongly suggest that functional activity of mGluR7 in mammalian brain exerts control on the development of ethanol reward. In our pharmacological studies we applied the two-bottle choice preference drinking method, a paradigm which has already been used in the seminal genetic studies that identified the mGluR7 gene as a modulatory locus for alcohol drinking (Vadasz et al. 2007).

For more than a decade, mGluRs are in the focus of drug discovery for neurological and psychiatric disorders including drug and alcohol addiction. For instance, MPEP-related compounds, i.e. mGluR5 antagonists, and LY379268, an mGluR2/3 agonist, are currently tested in multiple clinical studies. Regarding alcohol-related behavior, MPEP and LY379268 dose-dependently decreased ethanol self-administration in mice and in alcohol preferring rats (Backstrom & Hyytia 2005; Schroeder, Overstreet & Hodge 2005; Hodge et al. 2006; Besheer et al. 2010) supporting a crucial role for these receptors in the regulation of alcohol intake and reward.

Recently, the group-III receptor mGluR7 was found to represent a very intriguing target for studies on alcohol-related behaviors because of its genetic linkage to ethanol drinking (Vadasz et al. 2007), and its proven role in cocaine reward (Li et al. 2008; Li et al. 2009; Li et al. 2010), and due to its highest evolutionary conservation compared with all other mGluRs suggesting significant physiological roles (Flor et al. 1997). In a previous study, the mGluR7 allosteric agonist AMN082 was already shown to non-selectively reduce both, sucrose and ethanol administration in mice; in addition, 10 mg/kg of AMN082 (i.p.) in mice also reduced spontaneous locomotor activity (Salling et al. 2008). In our study, however, the same dose reduced alcohol intake and preference in rats with no effect on locomotor activity and saccharin consumption. Pharmacokinetic differences between rats and mice are likely to contribute to these discrepancies. In fact, a previous study performed with rats and mice identified lower optimal doses required for mice than for rats (Fendt et al. 2008). Furthermore, procedural differences between our study and the one by Salling et al. (2008), e.g. operant conditioning (fixed-ratio 4 schedule of reinforcement) versus preference drinking, regular versus sucrose-sweetened ethanol, may also contribute to these contrasting results. In addition, it was reported that administration of a low dose of 6 mg/kg (i.p.) of AMN082 changed spontaneous locomotor activity in C57BL/6J mice (Palucha et al. 2007), rendering higher doses in mice difficult to interpret.

Our findings on AMN082 to specifically reduce ethanol drinking in rats compare well with the recent study on mGluR7 and cocaine reward. Here, treatment with AMN082 in rats dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration as well as cocaine-induced reinstatement of cocaine-seeking (Li et al. 2009; Li et al. 2010). Again, AMN082 did not affect basal locomotor activity or sucrose intake (Li et al. 2009). AMN082 treatment selectively blocked cocaine-induced changes in extracellular GABA without affecting dopamine, suggesting a central role for mGluR7 in cocaine reinforcement (Li et al. 2008; Li et al. 2009). Our findings on alcohol consumption and preference suggest an involvement of mGluR7 in the

Figure 8 Treatment with 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPiP) blocks AMN082-induced inhibition of alcohol intake and preference. When using a 3% ethanol solution, co-administration of MMPiP significantly blocked AMN082-induced reduction of ethanol consumption (g/kg, a), ethanol preference ratio (b) but did not affect total volume intake (ml, c); both drugs were dosed i.p. at 10 mg/kg; VEH = vehicle. Data are represented as means ± standard error of the mean; n = 10 per group; *P < 0.05 compared with VEH-AMN082 group.

rewarding effects of ethanol. As the same doses of AMN082 failed to alter oral sucrose consumption, we argue that mGluR7 selectively modulates ethanol’s rewarding properties, rather than unspecific appetitive reward. When rats were injected with the mGluR7-selective antagonist MMPIP, ethanol drinking and preference were enhanced suggesting that mGluR7 functional impairment induces an alcoholism-like phenotype. This finding is supported by recently published study by Vadasz et al. (2007) who demonstrated that mice carrying mutations that lead to lower mGluR7 mRNA expression drink significantly more alcohol.

Our main finding of the present study that mGluR7 specifically controls the reinforcing properties of alcohol, i.e. functional activation of this presynaptic receptor reduces ethanol preference and consumption, raises important questions regarding the underlying neural circuitry and cellular pathways. Although experimental evidence is lacking, there are at least three mechanistically different alternatives to explain our observations: first, mGluR7 is well known to play a modulatory role in the stress axis of the brain, e.g. systemic AMN082 results in mGluR7-dependent regulation of blood stress hormones (an effect that is absent in mGluR7-deficient mice) (Mitsukawa et al. 2005). Moreover, mGluR7 is of critical importance for the glucocorticoid receptor-mediated negative feedback system of the brain stress axis (Mitsukawa et al. 2006). Interestingly, life stress and stress hormones such as glucocorticoids are reported to affect human drinking patterns (Cooper et al. 1992; Fahlke et al. 1994), and hypothalamic and/or hippocampal mGluR7 activation may counteract harmful drinking.

Second, mGluR7 shows highest expression in the NAc, amongst a few other brain regions (Kinoshita et al. 1998), and local administration of AMN082 reduces GABA-release and increases L-glutamate release in NAc (Kinoshita et al. 1998; Li et al. 2008). Both effects were reversed by the mGluR7 antagonist MSOP. Interestingly, pharmacological actions of ethanol are mediated, at least in part, by the postsynaptic targets of those neurotransmitters, i.e. GABA, and NMDA receptors. Thus, the effect of AMN082 on transmitter release could alter agonist-occupancy at those receptors, which eventually may affect ethanol’s allosteric modulating efficacy, possibly resulting in reduced ethanol reward mediated by the NAc. Finally, mGluR7 also shows prominent expression in the amygdala, prefrontal cortex and most strongly in the locus coeruleus: three structures that have all been implicated in the reinforcing effects of ethanol (Rodriguez Echandia & Foscolo 1988; Hodge, Chappelle & Samson 1996; Roberts, Cole & Koob 1996; June et al. 2001; Besheer, Cox & Hodge 2003; Salling et al. 2008). Our future studies will aim to dissect which of those neural structures and circuits are most critical for mGluR7’s regulatory role on alcohol reinforcement. Once the responsible brain structures are identified, investigations addressing the subcellular pathways need to follow.

Interestingly, the L-glutamatergic system has a crucial role in alcoholism, as demonstrated by the clinically effective compound acamprosate acting through this system (for review see Spanagel 2003; Spanagel & Kiefer 2008). In addition, a hyperglutamatergic state has been implicated in the etiology of alcohol dependence (Tsai & Coyle 1998; Pulvirenti & Diana 2001; Siggins et al. 2003; Spanagel et al. 2005). As mGluR7 is known to regulate presynaptic L-glutamatergic transmission, our findings may indicate that dampening of this transmission via the activation of mGluR7 may have the potential to inhibit development of alcohol dependence.

In terms of molecular pharmacological mechanism, AMN082 governs context-dependent receptor activity in the brain, activating selectively certain mGluR7 pathways in specific brain regions and cells, but leaving other mGluR7 pathways untouched. For instance, cAMP metabolism in clonal cell lines, HPA axis-driven stress hormone release to the blood and synaptic plasticity in the amygdala are modulated by AMN082, while certain mGluR7-regulated hippocampal ion channel functions stay unaffected (Ayala et al. 2008; Niswender & Conn 2010). Although the underlying physiological basis remains unknown, it seems likely that AMN082 targets mGluR7 such that only a subset of mGluR7’s signal transduction pathways are activated, possibly via a novel pharmacological site at the receptor-G protein interface.

Interestingly, MMPIP selectively antagonizes AMN082 in vitro and in vivo (Suzuki et al. 2007; Li et al. 2008, 2009, 2010), but also acts in a context-dependent manner affecting similar physiological and behavioral parameters as AMN082, but leaving other mGluR7 functions unaffected (Niswender & Conn 2010; Niswender et al. 2010).

Taken together, our study demonstrates that mGluR7 functional activity interferes with the rewarding effects of alcohol drinking suggesting that further exploration of mGluR7-directed pharmaceuticals with context-dependent and AMN082-like mechanism may provide future therapeutic value for the treatment of alcohol abuse and dependence in man.

Disclosure/Conflict of Interest
The authors declare no conflict of interests.

Acknowledgements
The authors would like to thank Prof. Dr. Inga Neumann for her valuable comments on the paper and for the permission to use her department’s animal facilities and
multiple experimental set-ups. We are also grateful to Dr. David Slattery for critical reading of the paper.

Authors’ Contribution

AB was responsible for the study design, data analysis and drafted the paper. AB, KP and MD contributed to the acquisition of animal data. FG provided assistance with pharmacological manipulation. PJJ facilitated with study design and interpretation of findings and provided critical revision of data and paper. All authors critically reviewed the content of the paper and approved the final version for publication.

References

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1 Experimental design and timetable of procedures.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.