Abstract The collecting duct (CD) epithelium of the mammalian kidney is an extraordinary structure with respect to its functional changes during development and its heterogeneous composition when matured. All of the different nephron epithelia of the mammalian kidney consist of one single cell type. In contrast, the differentiated CD is composed of at least three distinct cell types [principal, α intercalated-, and β intercalated cells] that are responsible for the multiple physiological functions of this kidney compartment. During development the function of the CD changes: initially, the CD ampulla serves as an embryonic inducer, while the matured epithelium plays a key role in maintaining the homeostasis of body fluids. At present the process of CD maturation is not well understood. Neither the time course of development nor the morphogenic factors leading to the heterogeneously composed epithelium are known. In the present study the differentiation of the CD epithelium was investigated using newly developed monoclonal antibodies and well-characterized antisera. The morphological changes induced during differentiation were monitored by immunohistochemistry and scanning electron microscopy. The experiments were performed on neonatal and adult rabbit kidneys. Results obtained by light microscopical techniques and scanning electron microscopy revealed that the ampullary tip can be distinguished from the ampullary neck, as well as from the maturing CD. A number of proteins that were not detectable in the ampulla were detected in the neonatal CD and were found at even higher concentrations in the adult CD (P_{CD}8, chloride/bicarbonate exchanger). Other proteins (P_{CD}9) were downregulated during differentiation. For the first time the transient character of the differentiation stage of the neonatal CD could be demonstrated unequivocally. Furthermore, considerable heterogeneity in protein expression patterns (P_{CD}6 and P_{CD}9) was demonstrated within the β IC cell population of the mature CD.

Introduction

The renal collecting duct (CD) fulfills two very different functions. It is firstly an embryonic inducer of new nephrons [45] and then continues with the control of acid/base status [1], the sodium/potassium (Na/K) balance [7], and the water content of the organism. The mature CD epithelium is comprised of at least three different cell types [principal (P), α intercalated (α IC), and β intercalated (β IC) cells] which can be distinguished on the basis of their morphological [32] and physiological features [29, 47].

The pleiotropic action of the renal CD starts at the onset of renal organogenesis by the invasion of the uretic bud epithelium into the metanephrigenic mesenchyme [45]. This tissue interaction results first in several dichotomous branching of the bud epithelium. The blind ends are known as ampullae and trigger the subsequent permanent induction of all of the nephrons. The dichotomous dividing mechanism leads to the CD system with many arborized endings that are found beyond the capsular fibrosa in the neonatal rabbit kidney. The nephrons and the CD system continue to develop until the late neonatal period. For this reason fully embryonic CD ampullae in the outer cortex can be compared with more mature tissue in the midcortical and medullary region of the neonatal kidney.

With respect to morphology and function, three different zones can be distinguished in the CD ampulla. The ampullary tip is composed of light-staining cells [12]. In the tip region the lumen of the ampulla is broader than in the next zone, called the ampullary neck. The neck consists of several cell layers expressing a darker staining.
than the cells of the tip. This region is followed by a transition zone, where the epithelium differentiates into light- and dark-staining cells [27]. Within the transition zone cells with microvilli (α IC cell) can already be distinguished from cells with long microvilli (β IC cell) or cells bearing a cilium and few stubby villi (P cell) [3]. Thus, from the ampullary tip to the cells of the neck and the transition zone, a differentiation gradient of embryonic to maturing P and IC cells is observed.

It has been assumed that the induction capability of the CD is located in the ampullary tip epithelium [19, 45]. This is supported by the fact that within the ampullary neck we can already observe the first morphological signs of differentiation [4]. Furthermore, the neck portion of the ampulla is the site where multiple cell divisions take place, causing the epithelium to grow towards the capsula fibrosa by elongation rather like a telescope antenna [39]. Then, in the transition zone, the sudden appearance of at least three distinct cell types is observed [4, 27]. According to morphological criteria, the α- and β-type IC and P cells become visible in this region [3, 4]. To date little knowledge is available about the morphogenetic factors influencing the differentiation from the embryonic inducer epithelium into the functional tissue of the mature kidney [15, 42].

In the present experiments we utilized immunohistochemical methods to investigate the individual changes of the embryonic CD cells into the functional epithelium. One major problem was a lack of markers to identify the various cell types during functional differentiation. Morphological [32] and physiological [29, 46, 47] data revealed that the different cell types within the CD represent very distinct cell populations. This was confirmed by some histochemical results. However, immunohistochemical experiments showed that the different cell types also share common characteristics. Thus, three different categories of immunolabelling patterns were described in the literature (Table 1). The first group comprised markers abundant on a single cell type, such as the amiloride-sensitive Na channel on P cells, peanut agglutinin (PNA) binding on the β-type IC cells, or the basolateral expression of the chloride/bicarbonate (Cl/HCO₃) exchanger by α IC cells. The second group includes markers that label not only P or one of the different types of IC cells, but were found on P cells as well as on one IC cell type or were expressed by both IC cell types. Within the third group are the markers that bind to all types of CD cells. As shown in Table 1, immunohistochemical studies can demonstrate both the similarities and the differences between the different types of CD cells. At present the origin of the different cell types is not clear. For this reason we were interested in investigating the immunohistochemical differentiation pattern of the developing CD. The newly generated monoclonal antibodies reacting with the CD antigens PCD6, PCD8, and PCD9 were used in conjunction with the monoclonal antibody IVF12, which detects the Cl/HCO₃ exchanger [22]. With these markers we traced the development of the CD epithelium from embryonic inducer to the mature CD with its well-known functions. We found that the maturation of CD cells is characterized by the acquisi-
of these controls revealed any labelling of the CD epithelium. The number of positive or negative cells was estimated by counting longitudinal sections of CD in the cortical, midcortical, and medullary parts of the kidney. More than 100 sections were evaluated.

Co-incubation experiments

The lectin PNA has been described as a marker for the β-type IC cells of the rabbit [33]. In order to analyze whether antibody-labeled or unlabeled cells belonged to this cell type, co-incubation experiments were carried out with the antibodies PCD 6 and PCD 9 and the lectin. The fixation method described above resulted in autofluorescence of the tissue. Therefore, another fixation protocol was used for immunofluorescence detection of the PCD antigens. Tissue sections were fixed in ice-cold ethanol and washed. Primary antibodies were applied for 90 min. Rhodamine-coupled antisera (Dianova) were used for the detection of bound primary antibodies. The sections were then treated with fluorescein isothiocyanate-conjugated PNA (1:2,000, Vector). Following the final washing step, the sections were mounted in FITCguard (Testoc, Chicago, Ill., USA) embedding medium and analyzed using an Axiosvert microscope (filter I:450–490, FT 510, LP 520; Zeiss, Oberkochen, Germany). For documentation TriXPan film (Kodak, Hemel-Hempstead, United Kingdom) was used.

Sections incubated with PCD 9 and PNA were examined with a confocal laser scan microscope (MRC 500, BioRad, Munich, Germany; in combination with a Zeiss IM 35 microscope). The optical sections were processed using software from BioRad. Co-incubation experiments with IVF12 and the PCD antibodies could not be performed due to the autofluorescence induced by the fixative needed for IVF12 detection.

Scanning electron microscopy

Freshly prepared kidneys were cut in small pieces. The samples were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome. The sections were fixed with 3% glutaraldehyde solution (Serva), frozen in liquid propane, and sectioned with the cryomicrotome.

Biochemical analysis of renal antigens

For the preparation of tissue homogenate, kidneys of neonatal rabbits were homogenized in ice-cold buffer (1×10^−2 M TRIS-[hydroxymethyl]-aminomethane, 0.15 M NaCl, 9×10^−3 M EDTA, 1×10^−4 M phenylmethane sulfonyl fluoride, Sigma). Homogenates were centrifuged (15 min, 12,000×g), supernatants discarded, and the pellet resuspended in buffer containing 2% Triton X-100 (Sigma). After 10 min incubation the lysate was centrifuged once again (30 min, 12,000×g). Aliquots of the lysate (20 µg protein/lane) were used for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (10% gel) according to the method described by Laemmli [31] and for two-dimensional electrophoresis according to the protocol of O’Farrell [40]. For the first dimension of the two-dimensional electrophoresis an ampholine mixture consisting of Ampholyte pH 3.5–9.0 and pH 4.0–6.5 was used (Ampholyte, Pharmacia, Freiburg, Germany).

Separated proteins were transferred onto Immobilon P membranes (0.45 µm, Millipore, Eschborn, Germany) using a semidyey blotting apparatus (PHASE, Mölln, Germany) and a discontinuous buffer system. In order to detect immunoreactive material, the blots were first blocked (PBS, pH 7.2: 0.05% Tween 20, Sigma; 10% horse serum, Boehringer), and then primary antibodies were applied as undiluted culture supernatants for 1 h. A horseradish peroxidase-conjugated donkey anti-mouse immunoglobulin antisera (1:2,000, Dianova) served as detecting antibody. The staining reaction was started by addition of 0.5 mg/ml diaminobenzidine, 0.02% H2O2, and 0.03% cobalt chloride dissolved in citrate buffer, pH 6.3. The reaction was stopped by washing the membrane in tap water.

Results

Characterization of antibodies labelling CD epithelium

The mature CD epithelium is characterized by a heterogeneous cellular composition (Table 1). The different cell types can be distinguished by their diverse morphological [32] and functional features [46]. Already in the neonatal kidney light P cells that bear a single cilium and

<table>
<thead>
<tr>
<th>Category</th>
<th>Features</th>
<th>P-cell</th>
<th>α-Type IC cell</th>
<th>β-Type IC cell</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na channel amiloride-sensitive</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>Brown et al. 1989 [10]</td>
</tr>
<tr>
<td>1</td>
<td>Aquaporin-2</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>Yasui et al. 1996 [54]</td>
</tr>
<tr>
<td>1</td>
<td>Peanut agglutinin (PNA)</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>LeHir et al. 1982 [33]</td>
</tr>
<tr>
<td>1</td>
<td>Cl/HCO3⁻ exchanger basal</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Verlander et al. 1988 [51]</td>
</tr>
<tr>
<td>1</td>
<td>Cl/HCO3⁻ exchanger apical</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>van Adelsberg et al. 1993 [7]</td>
</tr>
<tr>
<td>1</td>
<td>H⁺-ATPase, apical</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>Alper et al. 1989 [6]</td>
</tr>
<tr>
<td>1</td>
<td>H⁺-ATPase, basal</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Verlander et al. 1994 [52]</td>
</tr>
<tr>
<td>2</td>
<td>Carbonic anhydrase II</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Madsen et al. 1989 [34]</td>
</tr>
<tr>
<td>2</td>
<td>Ecto-5-nucleotidase</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Breton et al. 1995 [8]</td>
</tr>
<tr>
<td>2</td>
<td>Na/K-ATPase</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Gandhi et al. 1990 [17]</td>
</tr>
<tr>
<td>2</td>
<td>PCD 5/2</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Jamous et al. 1982 [33]</td>
</tr>
<tr>
<td>2</td>
<td>PCD 6 antigen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Gilbert et al. 1990 [18]</td>
</tr>
<tr>
<td>2</td>
<td>PCD 9 antigen</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>Present study</td>
</tr>
<tr>
<td>3</td>
<td>Na/K-ATPase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Riederstrale et al. 1988 [41]</td>
</tr>
<tr>
<td>3</td>
<td>Na/H exchanger</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Weiner and Hamm 1990 [53]</td>
</tr>
<tr>
<td>3</td>
<td>Cytokeratin 19</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Moll et al. 1991 [38]</td>
</tr>
<tr>
<td>3</td>
<td>PCD 1–5 antigens</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Minuth et al. 1989 [37]</td>
</tr>
<tr>
<td>3</td>
<td>PCD 8 antigen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Kloth et al. 1993 [27]</td>
</tr>
</tbody>
</table>

* Category 1, proteins specific for individual cell population within the CD; category 2, proteins specific for at least two mixed cell populations within the CD; category 3, proteins expressed by all cells of the mature CD.
short microvilli at the apical cell pole (Fig. 1a, d) are located side by side with dark-staining IC cells characterized by numerous long microvilli (β type) or microplicae (α type, Fig. 1c). Within the transition zone of the neonatal CD cells were observed which bore a single cilium and microplicae (Fig. 1b). These cells were found only in the neonatal and never in the adult CD.

Physiological experiments have revealed that the different cell types fulfill different functions that are associated with the expression of distinct membrane proteins and enzymes. However, monoclonal antibodies specific for the different cell types of the CD especially in rabbit kidney, are scarce. There is only one well-characterized antibody that exhibits exclusive specificity for a single cell type. α IC cells are labelled by the antibody IVF12 that binds to the Cl/HCO₃ exchanger protein, also known as the band 3 protein of the erythrocytes [22]. Therefore, we produced new monoclonal antibodies able to discriminate between the various cells of the CD epithelium. Three hybridomas (PCD6, PCD8, PCD9) were cloned and further characterized. The antibodies PCD6 (IgM) and PCD8 (IgM) nearly exclusively labelled the CD epithelium. Only a few cells of the connecting tubule were positive for these antibodies. PCD9 (IgGl) showed an intense reaction with cells of the CD but also reacted with cells of Bowman’s capsule, interstitial cells, and the endothelium. PCD antigen detection was not negatively influenced by the different fixation protocols applied in this study. All fixatives gave comparable and good results. In contrast, the band 3 protein could not be detected after simple ethanol fixation [22].

A first biochemical characterization of the antigens was carried out using kidney homogenates separated by SDS-PAGE. For immune incubation the proteins were transferred onto blot membranes. The diffuse reaction pattern of PCD6 and PCD8 could not be associated with distinct bands (not shown). It appeared as a broad smear covering the complete lane.

The antibody PCD9 detected antigens migrating at 32 and 39 kilodalton (kDa) (Fig. 2a). Following two-dimensional electrophoretic separation, these bands were subdivided into several immunoreactive spots with different isoelectric points (Fig. 2b). The 39-kDa antigen was separated into four distinct spots with isoelectric points of 6.3, 6.4, 6.6, and 6.9. Under the applied experimental conditions...
conditions, the 32-kDa antigen migrated in the range of pI 8–9 and could not be further separated. The blot showed several other spots with aberrant molecular weights. Due to the negative reaction on control blots (not shown), we assume that these spots represent proteolytic breakdown products of the 39- and 32-kDa proteins.

The embryonic CD ampulla in neonatal kidney

Beyond the fibrous organ capsule of the neonatal kidney numerous blind-ending ampullae of the CD system are found (Figs. 1 and 3). Three zones can be distinguished by scanning electron microscopy (Figs. 1a and 3a) [3, 12]. First is the ampullary tip (I), which consists predominantly of cells with a single cilium and few stubby microvilli (Fig. 1a). It differentiates into the epithelium of the ampullary neck region (II), where most cells bear numerous microvilli. Beyond this zone cells can be observed expressing the morphological characteristics of mature P and IC cells (Fig. 1c, d). This region is called transition zone (III). From the ampullary tip to the transition zone cells were observed which were not found in the mature CD. Some ampullary cells showed a smooth surface, whereas cells of the transition zone carried numerous long microvilli as well as a long cilium. Both cell types were exclusively detected in the neonatal and never in the mature CD.

To investigate changes in the antigen expression patterns that accompany the differentiation of the CD epithelium we used the newly developed PCD antibodies and the antibody IVF12, which detects the Cl/HCO₃ exchanger (Table 2). Incubation with PCD₉ revealed that all of the
ampullary cells expressed this antigen (Fig. 3c). In contrast, incubation with PCD6 (Fig. 3b) and PCD8 showed that the tip of the ampulla was negative, while the ampullary neck gave a slight reaction and the transition zone was intensely labelled. A completely different result was obtained with the antibody IVF12 (Fig. 3d). All of the ampullary cells including tip, neck, and transition zone were negative. Thus, a time-dependent gradient of early and late-appearing proteins was demonstrated in the CD ampulla with the monoclonal antibodies used in this study. Furthermore, the antibody PCD8 enabled for the first time a clear-cut distinction between embryonic and further matured CD epithelium. Ampullary cells were negative for PCD8 labelling, while the cells of the neck and transition zone became positive for this antigen.

Fig. 3a–d Zonal organization of the CD ampulla. a The blind ends of the developing CD are called CD ampullae. The ampullae are located beneath the organ capsule. Different zones can be distinguished on the basis of morphological features. I, The ampullary tip consists of pale-staining cells that for the most part carry one single cilium and few stubby microvilli (compare with Fig. 1a). II, the ampullary neck is composed of cells that are characterized by numerous short microvilli. The majority of these cells have no cilium. III, The transition zone is located beneath the ampullary neck. Here, cells can be detected expressing the morphological features of mature CD cells. For the immune incubation experiments a sensitive indirect immunoperoxidase method was used. Primary antibodies were applied as undiluted culture supernatants. Antibody binding was detected by means of a species-specific anti-mouse antibody conjugated with biotin. Bound antibodies were detected by horseradish peroxidase-conjugated streptavidin. b Cells of the ampullary tip (A, arrowheads) were not labelled by the monoclonal antibody PCD6, while cells of the ampullary neck and those of the transition zone strongly bind PCD6. c All ampullae were completely labelled by PCD9. d Only erythrocytes were labelled by the monoclonal antibody IVF12. No ampullary cells were detected expressing the band 3 protein. CF, Fibrous organ capsule, N, developing nephron. Scale bar, 50 µm.
Antigen distribution of the neonatal CD beyond the ampullary region

The collecting tubule beyond the transition zone showed homogeneous labelling with the P_{CD} antibodies (Fig. 4). All of the cells of the midcortical and medullary CD were positive after incubation with these antibodies. $P_{CD}9$ antigen was continuously expressed by embryonic and more highly developed CD cells (Fig. 4b), while $P_{CD}6$ (Fig. 4a) and $P_{CD}8$ antigens were upregulated during the maturation of the epithelium. The antibodies $P_{CD}6$ and $P_{CD}8$ are suitable for distinguishing between embryonic and maturing cells. These antigens were not expressed in the region of the embryonic ampullary tip, but were detectable in high concentrations below the ampullary neck (Fig. 3b).

Another example of a gradual increase in the expression of a protein during development can be demonstrated using the antibody IVF12. While none of the ampullary cells showed a positive reaction with the anti-Cl/HCO_3-exchanger antibody, up to 10% of epithelial cells from the midcortical to the medullary part were diffusely labelled by IVF12 (Fig. 4c).

Protein expression pattern of the adult CD epithelium

The development of the rabbit kidney is complete within 3–5 weeks after birth [35, 44]. Therefore, kidneys from animals older than 6 months were used for our investigations on antigen expression of the mature CD. Immunolabelling of the adult kidney revealed unexpected results (Figs. 5–7).

The $P_{CD}9$ antigen expressed by all epithelial cells of the embryonic and neonatal CD was downregulated by distinct cells of the mature CD (Fig. 5b). Regional differences in $P_{CD}9$ expression were monitored (Fig. 8). The CD of the inner medulla almost continuously expressed the $P_{CD}9$ antigen. $P_{CD}9$-negative cells were seldom found. Approximately 30% $P_{CD}9$-negative cells were counted within the outer medulla. Completely labelled segments were not found in this region. In contrast, the CD epithelium of the outer and inner cortex showed a considerable heterogeneity with respect to $P_{CD}9$ expression. The number of $P_{CD}9$ unlabelled cells in the outer and inner cortex varied over a wide range between 4% and 33%. In the outer cortex, epithelial segments were found where $P_{CD}9$-negative cells were nearly absent. In summary, $P_{CD}9$ expression was highly variable in the cortex region while the medullary parts of the CD were characterized by a constant expression pattern. Inner and outer medulla differed considerably with respect to the number of $P_{CD}9$-negative cells. The CD epithelium of the inner medulla showed nearly 100% $P_{CD}9$ expression, while in the outer medulla a relatively constant number of $P_{CD}9$-negative cells were detected.

A different expression pattern was observed for the $P_{CD}6$ antigen. First $P_{CD}6$ expression was upregulated in the neonatal CD. During final CD maturation, $P_{CD}6$ ex-
pression was reduced. Approximately 10% of the mature cortical CD cells showed no immune reaction for this antigen (Table 2, Fig. 6b).

In contrast, two molecules were continuously upregulated during CD maturation. Both PCD8 and the Cl/HCO3 exchanger were not detectable in the embryonic ampulla, but all neonatal and adult CD cells expressed the PCD8 antigen in large amounts (Fig. 5a). Thus, PCD8 antibody is the first suitable marker for the differentiation of embryonic and differentiated CD cells.

The Cl/HCO3 exchanger, a typical protein of αIC cells, also was upregulated during epithelial maturation. Compared with the neonatal CD, the number of Cl/HCO3 exchanger-expressing αIC cells increased considerably: 11% positive cells were found in the cortical and 50% positive cells were seen in the medullary portion of the differentiated CD (Table 2, Fig. 5c) [51]. Antibody labelling was restricted to the basolateral membranes.

Characterization of PCD6 and PCD9 unlabelled cells

In order to investigate whether PCD6- and PCD9-negative cells might belong to the β-type IC cell population, co-incubation experiments were carried out using the lectin PNA as a label for βIC cells [33]. In the adult kidney, PCD6-positive and PCD6-negative cells were detected which reacted with PNA (Fig. 6). Not all of the PNA-

Fig. 5a–c Antigen expression pattern of the adult CD epithelium. For immune incubation, kidney sections from animals older than 6 months were used. a All cells of the mature CD were positive for PCD8. A section through the medullar zone is shown. b The PCD9 antigen was downregulated during maturation of the epithelium. Approximately 30% negative cells were counted along the CD of the outer medulla. c At the border between cortex and medulla 50% of the CD cells expressed the band 3 protein. These cells were characterized as αIC cells [51]. Labelling was restricted to the basolateral membranes of the differentiated cells. Scale bar, 25 µm.

Fig. 6a–d CD cell subsets labelled by antibody PCD6. Rhodamine-conjugated antibodies were utilized for the detection of PCD6-labelled cells. Co-incubation experiments were carried out with fluorescein isothiocyanate (FITC)-coupled peanut agglutinin (PNA). The lectin PNA binds to βIC cells [33]. Different subsets of PNA-labelled cells were detected by co-incubation experiments. a CD segment of the midcortical region incubated with PNA. b Co-incubation of the same section with PCD6 revealed that some of the PNA-labelled βIC cells did not express the PCD6 antigen. c A section of the outer cortex region after PNA incubation. βIC cells were strongly labelled by PNA. d The section shown in c was co-incubated with PCD6. This experiment revealed that a subset of βIC cells (dotted lines) expressed the PCD6 antigen. Scale bar, 25 µm.
binding β IC cells were labelled by P_CD6 (Fig. 6a, b). These results indicate a heterogeneous composition of the β IC cell subset.

The heterogeneity of the β IC cell population was confirmed after P_CD9 incubation. Again PNA labelling was detected on P_CD9-positive and on P_CD9-negative cells (Fig. 7). We conclude that this antigen was down-regulated by a proportion of the mature β IC cells. However, some of the P_CD9-negative cells proved also to be negative for PNA (Fig. 7a, c). The distribution of P_CD9-negative cells along the mature CD (Fig. 8) indicated that some of the P and α IC cells also reduced the expression of this antigen.

A characteristic distribution pattern of P and IC cells along the mature collecting tubule has been described [34, 44, 47]. The β IC cells, which can be distinguished by PNA binding from P and α IC cells, were most abun-

Fig. 7a–f Heterogeneity of the β IC cell population. Sections co-incubated with P_CD9 and PNA were analyzed by laser scan microscopy. β IC cells of the CD were detected by lectin labelling. The co-incubation experiments revealed that the β IC cell population is heterogeneous with respect to P_CD9 antigen expression. a–c Lectin-binding CD cells that did not express the P_CD9 antigens. a An optical section of the CD of the inner cortex is shown. Six cells were labelled by the FITC-coupled lectin. b Most cells of this CD section were labelled by the antibody P_CD9. Few were negative for P_CD9 (arrow). c The projection of a and b revealed that all PNA-binding cells (green) in this segment were not labelled by P_CD9 (red). Some P_CD9-negative cells were also negative for PNA (arrows in a and b). d–f CD cells are shown which were double-la-

Fig. 8 Distribution of P_CD9-negative epithelial cells of the mature CD. Corticomedullary oriented sections of adult kidney were incubated with the antibody P_CD9. The number of P_CD9 unlabelled cells was counted in longitudinal sections of CD segments. Columns represent the percentage of unlabelled cells in the different zones of the CD (±SD)
vant in the outer cortex and the midcortical region [33, 44]. In contrast, α IC cells were the dominant cell type at the border between the cortex and the medulla [51]. A comparison of the reaction pattern of the new PCD antibodies with the reported data on the typical distribution of P and IC cells showed only a poor correlation. None of the cloned antibodies was specific for one of the described cell types of the CD. The PCD-9-negative cells were found along the CD from the outer medulla to the outer cortex. At the border between cortex and medulla, about 10% of the CD cells had downregulated the PCD-6 antigen. The cells which downregulated the PCD antigens could not be associated exclusively with any of the described CD cell types.

Discussion

The heterogeneous composition of the mature CD epithelium was demonstrated by morphological [32, 51, 52] and physiological experiments [47] (Table 1). A model has been proposed explaining the different data with the existence of at least three distinct cell types. As mentioned by Schuster et al. [46], species differences have to be taken into account when applying this model of the CD system to different mammals.

In the rabbit kidney, α IC cells can be detected by the antibody IVF12, which binds to the Cl/HCO₃ exchanger, also known as band 3 protein [22]. The lectin PNA is frequently used as a marker for β IC cells of the rabbit [33]. Antibodies binding exclusively to P cells are not available for rabbit CD epithelium. To date no molecules have been found which are exclusively expressed by one of the CD cell types. Cross-reactions of CD-detecting antibodies with other cell types, such as those observed with some of our PCD antibodies, are fairly common. Na/K-ATPase [41], carbonic anhydrase [13], and band 3 protein [22] are abundant in different cells and tissues. Their expression is not restricted to the cells of the CD epithelium.

The three cell types of the CD documented to date fulfill different functions, but they express a number of common proteins (Table 1). These results are confirmed by the binding pattern of some of the newly developed PCD antibodies (Figs. 3–7). The PCD-8 antigen was detected on all maturing and differentiated cells of the CD epithelium. All the cells of the epithelium except those of the ampullary tip were labelled by PCD-8 this enables us for the first time to make a clear-cut distinction between the ampullary cells that are responsible for nephron induction and those parts of the CD that have already started to develop the features of the differentiated epithelium. It will be a helpful tool for cell culture experiments dealing with CD cells. The unique binding characteristics of PCD-8 allows for the discrimination between differentiation and dedifferentiation under culture conditions.

Another antigen co-expressed by the different cell types of the CD was detected by antibody PCD-9. The antibody PCD-9 labelled all of the ampullary and neonatal CD cells. Negative cells were only found in the adult kidney. PCD-9 unlabelled cells were detected along the CD from the outer medulla to the cortical region. Within the inner medulla, PCD-9-negative cells were extremely rare. In contrast, in the outer medulla approximately 30% of the mature CD cells were negative for PCD-9. The cortical region was characterized by a more-variable expression of the PCD-9 antigen. Almost completely labelled duct segments were located beside segments with 30% unlabelled cells.

The distribution of PCD-9 unlabelled cells along the CD showed no correlation with the distribution of the different CD cell types. P cells are found along the whole CD [10, 54], while both types of IC cells are restricted to the outer medulla and the cortical region. The number of α IC cells is highest in the outer medulla (50% of the CD cells) [6, 51], β IC cells prevail in the inner cortical zone (30% of the CD cells), while only 11% IC cells of the α-type are found here [6, 34, 51, 52].

We tried to further characterize the PCD-9-negative cell population. By PNA co-incubation experiments we demonstrated that a proportion of the PCD-9-negative cells belong to the β IC cell population. However, double-negative cells were also detected. At present we cannot specify whether these cells are of the P or the α IC cell type. For the β IC cell type, a heterogeneous expression was also detected for the PCD-6 antigen. Again PCD-6-positive as well as PCD-6-negative PNA-labelled cells were found. However, our results indicated that at least the β IC cell population is heterogeneously composed with respect to PCD-6 and PCD-9 antigen expression. These data can be interpreted in different ways.

It is conceivable that the PCD-9 antigen is important for the regulation of CD cells function. The two-dimensional electrophoretic separation of the PCD-9 antigen revealed a suspicious spot pattern of the 39-kDa variant (Fig. 2b), indicating a different post-translational modification of the protein. The molecular weight remained unaffected by this modification, while the isoelectric points varied in a range from 6.3 to 6.9. A comparable pattern is achieved by differential protein phosphorylation that is a common regulation mechanism for enzyme activity [49] or signal transducing receptors [24]. Due to its intriguing spot pattern in immunoblots and its distribution along the CD (Fig. 8), we speculate that PCD-9 might be involved in the regulation of specific cellular activities, as has recently been reported for several phosphatases during nephrogenesis [48]. PCD-9 might be a regulatory molecule expressed in all physiologically active CD cells. At present we have no further information about the post-translational modification of the PCD-9 antigen. Detailed analysis of the PCD-9 antigen is needed to further elucidate its function.

Another explanation for the outcome of our co-incubation experiments may be that more than three cell types establish the epithelium of the mature CD. It was proposed earlier by other authors [21, 14] that more than three different cell types are abundant in the CD. Recently a subpopulation of β IC cells was described [14].
These PNA-positive cells were named γ IC cells. According to immunohistological findings they express a Cl/HCO$_3$ exchanger molecule that differs from the band 3 protein [2]. The origin and function of this subpopulation of IC cells is unknown. In the past cells exhibiting a diffuse cytoplasmic distribution of the Cl/HCO$_3$ exchanger were thought to be transitional forms between α and β IC cells [16]. It was assumed that some of these cells may represent precursors responsible for the regeneration of the epithelium [9, 16]. Other authors have proposed that a functional plasticity of the CD may be achieved by converting the specific functions of the different cell types [5]. Our results gave further evidence for a heterogeneous composition of the β IC cell population. At present it is unknown whether this heterogeneity reflects a different state of cellular activity within this cell population or whether it is a further indication for an additional IC cell subset.

Morphological criteria indicate that the transition zone of the ampulla is mainly composed of mature CD cells [3, 4]. These results are in contradiction to the physiological data. The functional differentiation of the rabbit kidney takes place within 6 weeks after birth [25, 35, 43, 44]. The capability to concentrate the urine is not completely developed in newborn mammals [11]. Due to restricted HCO$_3$ secretion neonatal rabbits show a metabolic alkalosis [35].

It is well known that the CD’s capability to reabsorb Na depends on postnatal maturation [20, 36, 50]. In neonatal kidney a high passive efflux of Na ions was measured which decreased gradually during the first 2 weeks of postnatal life [50]. Independently of the Na/K-ATPase expression found in all cells of the maturing CD [20], Na reabsorption tends to increase when tight junctions consisting of multiple strands have been formed. These reports are in close agreement with the results described in this paper. The functional maturation of the epithelium is reflected by distinct immunolabelling patterns. The CD epithelium of adult rabbits showed an antibody-binding pattern that can easily be distinguished from that of the neonatal as well as from the ampullary duct (Figs. 3–5). Up- and downregulation of different proteins were detected during CD maturation. The expression of the PCD 8 antigen starts when the epithelial function converts from an embryonic inducer to the maturing CD. The first α IC cells are detected at the border between the cortex and the medulla of the neonatal kidney. Both immunolabelling and α IC cell numbers differ considerably from the situation found in the mature organ (Fig. 4) [25, 51]. While less than 10% of the cells in the neonate expressed the Cl/HCO$_3$ exchanger, 50% positive IC cells were detectable at the border between cortex and medulla in the differentiated CD. Immunolabelling was localized basolaterally in the adult, while the maturing cells were characterized by diffuse antibody binding.

While the maturation of α IC cells was characterized by enhanced expression of the Cl/HCO$_3$ exchanger, the differentiation of β IC cells was accompanied by a downregulation of protein expression. Both PCD 9 and PCD 6 antigen were expressed by all neonatal cells, even those labelled by PNA. In the adult kidney, co-localization of PCD 9 and PNA binding was restricted to a proportion of the β IC cells. The PCD 9 antigen was downregulated by a subset of the β IC cells. Furthermore, a proportion of β IC cells also had reduced PCD 6 expression. The diminished expression of an epithelial protein by IC cells has already been reported [20, 25]. In the prenatal kidney Na/K-ATPase is abundant in all cells of the CD, while it is downregulated postnatally in IC cells [41]. The downregulation of this protein is of functional significance, as has been described by Schuster et al. [46]. P cell function is correlated with the regulation of the Na/K balance, while IC cells are involved in the maintenance of the acid/base status of body fluids. However, we do not know whether the downregulation of PCD 6 and PCD 9 in a proportion of β IC cells is coupled with the functional maturation of these cells. Analyzing the distribution of PCD 9 unlabelled cells, it became obvious that P and α IC cells are also capable of downregulating this antigen. These results may be interpreted in terms of a functional plasticity of the CD epithelium [5]. The reduced expression of PCD 9 might be coupled to a distinct activation state of the mature CD cells. Further biochemical characterization of the PCD 9 antigen is under way in order to investigate the function of this molecule. The results presented herein reveal clear-cut morphological and immunohistological differences during CD maturation. The adult CD can be distinguished from the neonatal as well as from the ampullary duct epithelium. We conclude that the neonatal CD epithelium represents a transient differentiation stage.

Acknowledgements The skillful technical assistance of Mrs. Marion Kubitza and Mrs. Elfriede Eckert is gratefully acknowledged. We thank Mr. U. de Vries for his support in laser scan analysis. We are indebted to Dr. J. Monzer for the excellent graphic work. This investigation was supported by the Deutsche Forschungsgemeinschaft (Mi 331/4-1).

References

